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A new advection algorithm based on the scheme by MacCormack
has been implemented in the atmospheric meso-p-scale model
developed at the Department of Meteorology, Uppsala University. Prior
to the implementation of the scheme, it was first tested in a simple
advection model and in a shock wave model. The meso-y-scale model
used to have a simple forward upstream scheme. The new scheme givas
much less numerical dissipation compared to the upstream scheme,
and this may cause refiecticn at the upper boundary. This is clearly seen
in a simulation of airflow over hell-shaped terrain. This reflection was
avoided when the model was provided with an upper boundary condi-
tion, proposed by Klemp and Durran, that permits radiation of internal
gravity waves. In a simulation of a sea breeze circulation, the new
scheme gives a sharper sea breeze front. It also gives a higher maximum
wind speed and the maximum is reached earlier in the simulation. The
grid in the meso-y-scale model has also been staggered, the velocity
components have all been moved a half grid interval from the location
of the thermodynamic variables in the direction of the respective
velocity component.  © 1994 Academic Press, Inc.

1. INTRODUCTION

Advection is one of the most important physical processes
in the atmosphere. Hence there is a need to have as good
advection scheme as possible in a numerical model of the
atmosphere. This i3 even more important n a dispersion
model with chemistry included. What is then meant by a
good scheme? A “perfect” advection scheme should fulfill
four important criteria. It should be conservative, ie., the
model must not change the total content of any conservative
property, e.g., mass due to the advection scheme itself; the
scheme should be positive-definite, a variable which is
defined positive must remain positive; furthermore, the
scheme must not introduce any new over- or undershoots;
and, last but not least, amplitude as well as phase errors
should be as small as possible. Together with these four
criteria, computational efficiency must for many applica-
tions also be taken into consideration. In the literature a
number of methods for the numerical solution of the advec-
tion can be found. Reviews and comparisons can be found
in,eg,[1or2]

581/115/1-3

The MIUU-model have used the forward-upstream
scheme for the advection
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where o is U/ dt/dx, U is the velocity, ¢ is time, and x is
tength. This scheme is conservative, positive-definite, and
monotone. However, the scheme is associated with large
numerical dissipation so amplitude errors are often large
and in some cases that is also true for the phase errors as
well. Along with the forward-upstream scheme, the
Lax-Wendroff scheme was one of the first used in
atmospheric models using the finite difference method. One
step forward in time is here determined by

Grtl = gr—a(gr IR — g2, (2a)
where the intermediate value is obtained from
H+1/2 1 n ] x n n
¢j+1/2=E(¢j+1+¢j)—§(¢’j+1”¢j)- (2b}

For meteorological applications it is interesting to study
how this scheme was further improved by Gadd [3, 4], who
instead of (2a) used
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where a is a weight for the finite difference approximations
to the spatial derivative. The intermediate value was still
obtained from {2b). It reduces to the Lax-Wendroff scheme
ifa =0. Gadd’s scheme was in its turn then slightly modified
by [5-6]. The lax-Wendroff scheme is a so-called two-step
method and a variation of this is the scheme proposed by
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MacCormack [7]. This method alternately uses forward
and backward differences for the two steps. The algorithm is

¢n+l %{¢ +¢n+l ¢n+l_¢;1—ll)}’ (43.)
where the preliminary value is
= ¢ (g, — ). (40)

In the linear case, that is if I/ and ¢ are independent of
each other, MacCormack and Lax—Wendroff are identical:
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This is a scheme of order 2.2; i.e., it is of second order in both
space and time. Another way to improve a scheme to a
higher order in time is to use data from more than one time
level. An example is the frequently used leapfrog scheme,
which is also of the order 2.2,
=977 —ald],  — 87— \) (6)
This scheme needs information from timestep n— 1, as
well as from timestep #. Hence, one must store all the data
from n— 1, and especially if the model includes chemistry
this means quite large storage requirements. Furthermore,
this scheme may give a nonphysical solution, the computa-
tional mode, or decoupling of time-levels, as the value of a
certain variable does not depend on the value of the same
variable in the previous timestep. The solution may “jump”
between two different developments. In order to suppress
this separation of the solutions between odd and even
timesteps either an occasional forward timestep or some
kind of time filter has to be used. An occasional forward
timestep means that the scheme no longer is of the second
order in time. If a time filter is used on the other hand
timestep # —2 must also be taken into consideration,
b7+ d 28] 4 )
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where g is the filtering weight. If we are using this filter, this
will demand even more computer storage as well as com-
puter time.

The leapfrog scheme can be modified to a higher order in
space, leapfrog4,
g7ri=¢7""— =887, (8)
where five gridpoints are used instead of three when com-
puting the next timestep.

The next section presents a new advection scheme, its
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accuracy, and its numerical stability. The third section gives
some results from two quite simple models, whereas the
behaviour of the scheme in a more complex atmospheric
model is described in the fourth section. Conclusions and
discussion are found in the closing section,

2, THE NEW ADVECTION SCHEME

2.1. The Improved MacCormack Advection Scheme

An improvement of the MacCormack scheme (4)
involves a change both to the first and the second step. This
can be done in a number of ways; the three most obvious are
the following:

In the first one, MC2a, gridpoints further outward are
taken into consideration:
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Another way 1s to instead use gridpoints on both sides of
the original ones, MC2b,
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And a third way is to take gridpoints towards the center
into consideration, MC2c.
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If a = 1 in the first scheme, it becomes a scheme of fourth
order in space, as shown in the next subsection. For MC2b
the value of a should be 1, then this also becomes a scheme
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of fourth order. For the third scheme, however, only third
order can be obtained and that is independent of a. As will
be seen the results from the first two schemes are very
similar, but as more gridpoints are involved in MC2b, seven
instead of five in MC2a, the boundary conditions will be
simpler with the first scheme, When one of these schemes, or
the original MacCormack scheme, is used the direction of
the numerical stencil should be alternated; i.e., in the case of
MC2a (9) the grid points j, j+ 1, and j+ 2 should be used
in the preliminary time step and j, j—1, and j—2 in the
second step and vice versa every other time step. In two or
three dimensions the advection in the different directions
should also be alternated. These things are done to avoid
systematical errors.

The MacCormack scheme, and its cousin Lax—WendrofT,
have not been used so often in meteorological models but
some recent applications of the MacCormack scheme can
be found in [8,9]. Reference [10] presented results
suggesting that the Lax~Wendroff scheme has damping and
phase properties which are unacceptably inferior to those of
the leapfrog and other schemes. This implication is,
however, false, as [ 3] pointed out. The scheme studied by
[10] was not the true Lax—Wendroff scheme, since there
was no spatial staggering at the intermediate time levels,
n + %. Unfortunately this erroncous assessment has had a
lasting influence within parts of the meteorological science
community.

2.2, The Accuracy of the New Scheme

If we apply MC2a to the simple linear advection equation

o¢
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we obtain the expression
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where all the terms on the right-hand side are at timestep ».

The coefficients for the «-terms are at the respective grid-
points:

aj/2in ¢; , ,,
l+aing
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The right-hand side in Eq. {13} should equal —2x Ax ¢'".

If we now use common Taylor expansion around ¢,
neglecting terms of order Ax* or higher, we obtain

|
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and from this we see that the choice of a should be i. The
new scheme is thus of fourth-order accuracy in space, but it
is still of second order in time.

2.3. The Numerical Stability of the New Scheme

If we use the difference operators

D, ¢! =(¢),,— $2)/dx
D¢y =(¢7—¢r_,)/dx
Dod) = (4, — &) ,)/24x
Dot = (@), 2~ §]_,)/ddx

(14)

for the horizontal derivative 3/0x and
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for 82/8x2, it is possible to write
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for the linear advection equation {12). Here we have used
a=1in MC2a (9). If we then use
D, 4] +D_¢7=2Dy4;
Do ,"'+1 + Dod’;—] = 2D00¢;
D_ D0¢j+; +D+ Do‘f’j—l =2D0D0¢j

(17)
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TABLE I
The Stability of the New Advection Scheme MC2a Depending on Different Wave Lengths and Courant Numbers

0.0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1.0
24x 1.0000 0.9644 0.8578 0.6800 0.4311 0.1111 0.2800 0.7422 1.2756 1.8800 2.5556
34x 1.0000 0.9849 0.9416 0.8775 0.8089 0.7661 0.7928 0.9240 11621 1.4%00 1.8%16
44dx 1.0000 0.9951 09814 0.9621 0.9431 0.9330 0.9434 0.9865 1.0724 1.2065 1.3889
SAx 1.0000 0.9981 0.9929 0.9858 0.9790 0.9758 0.9805 0.9982 1.0338 1.0920 1.1761
6dx 1.0000 0.9991 0.9968 0.9936 0.9906 0.9894 0.9918 1.0003 1.0173 1.0457 1.0877
Tdx 1.0000 0.9996 0.9983 0.9%67 0.9952 0.9946 0.9960 1.0006 1.0098 1.0253 1.0485
84x 1.0000 0.9998 0.99%1 0.9982 09974 0.5971 0.9979 1.0005 1.0056 1.0142 10272
94x 1.0000 0.9999 (.9995 0.9989 0.9985 0.9983 0.9988 1.0004 1.0035 1.0087 1.0166
104x 1.0000 0.99%% 0.9996 0.9%93 0.9990 0.598% 09992 1.0003 1.0024 1.0058 10111
114x 1.0000 0.9999 0.9993 (.9595 0.9993 0.9992 0.9995 1.0002 1.0017 1.0041 1.0078
124x 10000 1.0000 0.9998 0.9997 0.9996 0.9995 09597 1.0002 1.0011 1.0027 1.0051
134x 1.0000 1.0000 0.9999 0.9998 0.9997 0.9995 0.9998 1.6001 1.0008 1.0019 1.0036
144x 1.0000 1.0000 0.9599 09998 0.9997 0.9997 0.9998 1.0001 1.0006 1.0016 1.0029
154x 1.0000 1.0000 0.99%9 0.999% 0.9998 0.9998 0.9999 1.0001 1.0005 1.0013 1.0024
[6Ax 1.0000 1.6000 0.9999 0.9999 0.9998 0.9998 0.9999 1.o001 [.0004 1.0010 1.0019

we will obtain

With these it is possible to transform (18) and we obtain

Al _ = U At (3Dy¢" — 1D oy " 4U At ., 1U4r
Z % (3Do¢) = 5D d7) z=1—§d—ismwa+g y isin 2w Ax
2 2,8 X X
+ U~ A4t (§D+D—¢;_%DODD¢;)- (18}
RUAN? | ,wdx
The Fourier transforms of these difference operators are o\ Tax ) T
. s A 2
Dy — isin(w Ax)/dx % (ﬁ—(; t) sin? @ Ax, (20}
. x
Dy — i sin(2w Ax)/24x
{19 . e .
D, D_ — —4sin’(w Ax/2)/Ax? where z is the amplification in each time step. If the scheme
is stable then |z| < 1 for any w Ax.
DyDy— —sin? 2, . - . .
oD = —sin(w dx){4x By introducing A=UAdt/4x, y=cw dx, using tri-
TABLE II
The Phase Velocity for the New Advection Scheme MC2a Depending on Different Wave Lengths and Courant Numbers
0.0 0.1 0.2 03 04 0.5 0.6 07 0.8 0.9 1.0
24x 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
34x 1.0000 0.6316 0.6674 0.7324 0.8326 0.9662 1.1036 1.1930 1.2144 1.1881 1.1386
44x 1.0000 0.8556 0.8760 (9099 0.9566 1.0134 1.0740 1.1287 1.1674 1.1845 1.1807
Sdx 1.0000 0.9351 0.9467 0.9658 09918 1.0234 1.0386 1.0942 1.1264 1.1514 1.1664
64x 1.0000 09673 0.9747 0.9868 1.0032 1.0234 1.0466 1.0713 1.0960 1.1188 1.1378
74x 1.0000 09820 0.9871 0.9954 1.0068 1.0209 1.0374 1.0555 1.0745 1.0933 1.1111
84x 1.0000 0.9895 0.9931 0.9992 1.0076 1.0180 1.0303 1.0441 1.0590 1.0744 1.0898
94x 1.0000 0.9935 0.9963 1.0009 1.0073 1.0154 1.0250 1.0358 1.0477 1.0604 1.0734
104x 1.0000 0.9958 0.9980 1.0017 1.0068 1.0132 1.0208 1.0296 1.0393 1.0498 1.0608
114x 1.0000 0.9972 0.9990 1.0020 1.0061 1.0113 1.0176 1.0248 1.032% 1.0417 1.0510
124x 1.0000 0.9981 0.9996 1.0020 1.0055 1.0098 1.0150 1.0211 1.0279 1.0353 1.0434
134x 1.0060 0.9987 0.9959 1.0020 1.0049 1.0086 1.0130 1.018t 1.0239 1.0303 1.0373
144x 1.0000 0.959%0 1.0000 1.0019 1.0044 1.0075 10113 10157 1.0207 1.0263 1.0323
154x% 1.0000 0.9993 1.0600 1.0018 1.0039 1.0066 1.009% 1.0138 1.0182 1.0230 1.0283
164x 10000 0.9995 1.0000 1.0016 1.0035 1.0059 1.0088 1.0122 1.0160 1.0203 1.0250
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gonometric identities and square the real part and the
imaginary part separately we obtain

R 16472 3242 51244 2564°
|z]*= I_T +Tcosy— 21 cos 7 + T cos®y

2 2
+ 391 sinzy—%&“sinzy—gﬂzsinzycosy
11244 A2 9
+ 5 sm2ycosy+;sin2ycoszy+%zl4sin4y.
(21)

Since all the sine terms are either raised 10 2 or 4, they are
easy to convert to cosine terms, while at the same time
putting cos y =1, where [y|=<1, the final expression
becomes

|17 = 1= 22+ G+ 3% — RN - RAN+ BN
+ 5N - R — AN+ A (22)

This somewhat cumbersome expression can be compared to
the corresponding expression for the original MacCormack
scheme, which is just |z]?=1.

Table I shows how the ampiification of the new scheme
depends on the wave length y = @ Ax and the Courant num-
ber A= U At/4x. As can be seen in this table the scheme is
stable if 4 is kept less than about 0.7. This agrees with
experiences for both linear and non linear cases.

Table II shows that the phase velocity, which we can
obtain from (20), is'also reasonably close to unity if 4 is kept
less than about 0.7 and if we are dealing with wavelengths
that are 64x or longer.

3. NUMERICAL TESTS

3.1. Description of the Tests

To see how these variations of the MacCormack scheme
and other advection schemes behave, they have been tested
in two different ways. The first is a simple Jinear advection
n one dimension with 360 gridpoints and with periodic
boundary conditions. The advected shapes have been either
a half sine curve, a triangle, or a rectangle. As they move
along a circle we will not have any boundary problems.

The second test, described by [111, is a quite common
way to see how different numerical schemes act in a non-
finear case. Here we use the equations of Ewler, which
describe the dynamics for an inviscid flow (hence neglecting
the viscosity of air). The equations in one space dimension
are

ar oRI)

at ax

(23)

where

I'=(p, pu, pE)'
K ={pu, pu* + p, (pE + p)u),

where p is the denstty, « is the velocity, p is the pressure, and
E is the total energy per unit mass. The variables relate to
each other by

E=3u'+e, p=(y—1)pe,
where e is the internal energy per unit mass and 7 is a con-
stant, 1.4 for air.

Consider an infinitely thin and long pipe filled with air
and a tightfitting plate in the middle of the pipe. If the
pressure of the air is higher on one side of the plate a shock
wave will go through the pipe if the plate is removed. This
shock wave is nonlinear and can be used to see how the dif-
ferent numerical schemes behave in a nonlinear case. To the
right of the plate the initial density is set to 0.125 and the
pressure is 0.1, To the left the density 1.0 and the pressure
1.0 are used instead. The velocity is zero initially on both
sides of the plate. Note that all variables are nondimen-
sional and not expressed in Sl-units. As the pipe not only is
infinitely thin but also infinitely long, boundary conditions
will not need to be considered in the numerical model, the
pipe just need to be long enough for the shock wave not to
reach the boundaries during the simulation. The values at
the boundaries will remain the same during the whole
infegration.

The new advection schemes (9)-(11) were compared with
the advection schemes mentioned earlier: forward-upstream
{1), Lax~Wendroff (2), Gadd (3), MacCormack (4), leap-
frog (6), and leapfrog (8}. These schemes were applied to the
conservative variables p, pu, and pF.

A numerical advection scheme of a higher order, without
momerical dissipation, will produce oscillations, Gibb’s
phenomena, at discontinuities in the solution. This also
occurs when the discontinuities are in the derivatives of the
solution, e.g., advection of the half sine curve. In the latter
case the discontinuities are in the first derivative in the
corner points,

By applying some kind of filter these phenomena can be
avoided. The simplest filters are either a spatial smoothing
filter or a cutoff filter. In these simulations a filter suggested
by [ 12] has been used; it is the same filter that is used in the
MIUU meso-y-model, which is described in the next sec-
tion. If the peak region is sufficiently smooth this nonlinear
filter smoothens out 2m Ax ripples by applying a local
smoothing operator, without suppressing a possible peak
vatue significantly, The filter is defined as

eprthrl=eptihy g {Acfrllfzk(ﬂf +ﬂf+ 1)
— ATt A uil )

k= 0, 1, 2; eny Kmax! (24)
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where the index k is an iteration index, « < ; is a diffusion
coefficient and y, is a mesh parameter which is set to 0 for
all values of i before each iteration. Further variables in this
filter are

A 1 p=Cip1—Cs S c=sign{de; ).

By means of the sign function it is possible to detect 2m Ax
ripples. If §;# S, , for a particular j, a local extremum is
present. To see whether it is a true extremum, §;_,,. .., 5;
must have the same sign, whereas S;,,, .., S,,,, are all
required to have the opposite sign. If this condition is not
fulfilled, then all g4, are reset to 1 in the interval with the
nodes j —m to j+m. If the sign condition holds, there is a
true local extremum and the filtering process can be con-
tinued at x;, . The selective smoothing can be repeated
several times, Here the values are set as x =0.25, k=2, and
m=1 for filtering 24x waves and in some applications
k=025 k=2, and m=2 for filtering 44x waves. The
44 x-hilter produces 2Ax-waves, so if this filter 1s used, the
2Ax-filter must be used afterwards.

A different approach is to use a filter which takes away all
values that are below or above a certain level. This is espe-
cially useful when it comes to avoiding negative values for,
e.g., relative humidity or concentration. When using filters
one must be careful to assure that the filter does not change
the total content of the filtered variable, the filter must be
conservative. This is especially crucial at the boundaries. It
15 important that the filter does not prevent a concentration
from vanishing out through an outflow boundary. Conser-
vation is assured by simply addings as much to the other
gridpoints as is filtered away at the filtered gridpoint. Grid-
points at inflow boundaries are never filtered though.

3.2. Results of the Linear Advection

To integrate a meso-y-scale model 24 h takes about 5000
iterations with a typical timestep of about 15 s. In these tests
with simple linear advection the total number of iterations
are about 10,000. The advecting velocity varied between |
and 7 m/s giving a Courant number of 0.1 to 0.7. Both the
2Ax-filter and the 44x-filter were used in all integrations. In
Fig. | the results with a velocity of 5 m/s, corresponding to
a Courant number of 0.5, are shown for the forward-
upstream scheme (1), Lax-Wendroff (2), Gadd (3), leap-
frog4 (8), the original MacCormack scheme (4), and the
three new versions of that scheme (9), (10), and (11).

Between each graph there are 3600 iterations, corre-
sponding to five rotations around the circle with an advec-
tion of 5m/s. Thus if the advection scheme is perfect ail
graphs should be exactly the same. This is obviously not the
case when we use the upstream scheme. Already after five
rotations the wave is very damped and after 15 rotations the
wave is almost impossible to see. It appears as a straight line
with a value slightly less than 0.1. There is also a phase

error, as the maximum value for each wave i1s somewhat
further to the left. The Lax-Wendroff scheme also loses
some of the initial amplitude, and there are also disturban-
ces to the left of the wave. These disturbances are not filtered
as they are longer than 44x; the whole circle is divided into
360 gridpoints. The figure only shows the result after five
and 10 rotations. After another five rotations the errors were
even larger, in fact too large for the curve to include in the
plotted graph; some values were below —0.3. The Gadd
scheme provides, as expected, a somewhat better result.
Here we can see the wave after five, 10, and 15 rotations.
The amplitude is closer to unity and the small disturbances
are slightly smaller. The result for the leapfrog method is
about the same as for the upstream method. The damping
is slightly smaller, but the phase error is almost more evi-
dent, although here the maximum is pushed a little to the
right for each rotation. The original MacCormack scheme
gives exactly the same result as the Lax-Wendroff, which is
what should be expected as they are identical in the linear
case, just as Eq. (5) showed. The first two of the new
schemes give results that are very similar. The amplitude of
the wave is best conserved of all the schemes, and the small
scale disturbances are slightly smaller than for both the
original scheme and the scheme provided by Gadd. The dis-
turbances are smallest when using MC2b, and in this case,
advecting something around a circle, boundary problems
do not appear. However, using these schemes in a limited
area model, MC2a is easier to apply, as discussed earlier.
The third of the new schemes, MC2¢, was not of fourth
order in space as the other two. This scheme gives a result
which 1s quite similar to the one provided by Lax-Wendroff
or the original MacCormack scheme.

3.3. Results of the Shock Wave Test

In the atmosphere we are usually dealing with nonlinear
events. To test the advection schemes in the nonlinear case,
they were applied to the shock wave simulation described
earlier. The forward-upstream scheme was not applied to
the shock wave test; instead another scheme with much
numerical viscosity was used, the Lax—Friedrich scheme:

1

> (25)

o
¢r+t= (¢}’+1+¢}’_1)—5( 1~ 87 1):

As we can see in [ig. 2 the result of this scheme does not
look like a real shock wave, the pressure curve reminds us
more of a downhill slope. In all the other cases a more
accurate picture of the physics is obtained. Most cases
expose small scale disturbances at the discontinuities. This
is maybe most distinct for the Lax—Wendroff scheme, where
a relatively large peak appears upstream of the shock wave
front. This peak is also present in the Gadd simulation,
although smaller, but here there i1s also a disturbance
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FIG. 1. Advection of a half sine curve along a circle according 1o the different schemes. The advecting velocity is 5 m/s. The curve has rotated five

revolutions between each graph.
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downstream of the front. The leap frog scheme gives a very
realistic result with just a trace of smoothing at the sharp
comers. The MacCormack scheme gives a result that is
quite similar to the Lax-Wendroff scheme, but they are not
identical as we are now dealing with a nonlinear
phenomenon. The disturbances provided by this scheme is
somewhat smaller than the disturbances from the
Lax-Wendroft scheme. Just as in the previous subsection
the results from the two first of the new schemes are almost
the same. Compared to the result from the leapfrog scheme
they give slightly sharper corners but there are also hints of
Gibb’s phenomena, so it is actually a matter of taste to
choose between MC2a, MC2b, and the leapfrog scheme. As
stated before the leapfrog scheme demands storage of the
old time steps and this can be quite demanding in a large
three-dimensional model for the atmosphere into account.
The third of the new schemes actually gives a worse result
than the original MacCormack scheme.

4. THE NEW ADVECTION SCHEME IN
THE MIUU MESQ-y-MODEL

4.1. The MIUU Meso-y-Model

So far only advection in physically simple models has
been studied; the next step is {0 introduce the new advection
scheme in a physically more sophisticated model for studies
of the atmosphere. At the Department of Meteorology,
Uppsala University (MIUU), a three-dimensional numeri-
cal model for studies of atmospheric flow on the meso-y-
scale has been developed during the last decade [13].
Atmospheric flow on the meso-y-scale has typical horizontal
scales on the order of a few kilometers and a time scale of
some hours. The turbulence closure scheme in the model
was developed by [ 14] and is of the second order, level 2.5.
Recently situations where the hydrostatic balance between
gravity and the vertical pressure gradient force cannot be
applied, i.e., nonhydrostatic effects, have been investigated
[15,16]. A recent application of the model can be found
in[17]

Topography is introduced by the application of a terrain-
following coordinate system with the vertical coordinate #,
defined as

(26)

wherte 5 is the top of the model, z, is the terrain height, and
z is the height above sea level. The vertical gridpoints are
spaced according to a relation which varies approximately
logarithmically in the surface layer and linearly in the higher
levels, ie., in the same general manner as many important

variables do, temperature, wind, etc. This is done with the
coordinate transformation

1
a=Aq+Bln("+ (27)

; Ao =const,
&)

where 4, B, and C are constants. The reason for this trans-
formation is that the accuracy of a finite-difference
approximation is improved if the grid is defined in such a
way that vanables vary linearly with coordinates. in most
applications the horizontal grid is aiso transformed, to
increase the resolution in the central area. This transforma-
tion is usually done with either a gaussian or with an arctan
transformation. An exponential expansion of the grid can
also be used; ie., the distance between two gridpoints is
multiplied with a constant factor to obtain the distance
between the next two gridpoints. The original differential
equations are transformed into the new horizontal coor-
dinate system and the grid is then equally spaced in the new
coordinate system. These telescopic grid transformations
allow high resolution in the area of interest but at the same
time keep the lateral boundaries as far away as possible, in
order to reduce the influence of possible errors made in the
boundary conditions. The new set of basic equations in this
transformed coordinate system then becomes

du 5\ 0 G,
() sk

_9(%3_7)n=c+g”—;—f%1;—g+ﬂ/ (28)
%=(szg)2%(KM%§)+ng

where
%=%+U-§;+V%+W*%, (31)

U and V are the new quasi horizontal wind components,
W* is the vertical wind in the terrain following coordinate
systermn, & is the potential temperature, f is the Coriolis
parameter, U, and V_ are the geostrophic wind com-
ponents, g is the acceleration of gravity, K, and Ky are the
turbulent exchange coefficients for momentum and heat, o,
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is the radiative heating or cooling, and I7 is the scaled
pressure (Exner function) defined as

(2
P - .
0

In this expression p is the pressure, pg, 18 a reference
pressure, ¢, is the specific heat at constant pressure, and R,
is the gas constant for dry air. The equation of continuity in
the transformed coordinates is

1= (32)

U@zg

Oz,
-é;+ 14

5—;) (33)

U &y ewr 1 (
on

FPAR TR v

§—

4.2. Staggering the Grid

The MIUU model has prior to this been staggered only
in the vertical direction. Turbulence is calculated at vertical
levels between those where the rest of the variables are
determined.

The calculation of the vertical wind, which is obtained
from the continuity equation, will be improved if all the
velocity components are also staggered. If we move all three
components half a gridstep along each respective direction,
the horizontal divergence of the horizontal wind com-
ponents, instead of the velocity itself can be estimated in the
“old” gridpoints. The staggered velocity components are
shown in Fig. 3. The vertical velocity, w, will be at the same
levels as the turbulence. Another major advantage of this is
that two gridpoints next to each other can be used when
calculating horizontal derivatives of thermodynamic
variables in the equations for the velocity components. This
is also the case for the dependence of the slope of the terrain,

on o 2, 22,
ax’ 8y’ dx’ 8y’

in the equations of motion (28) and (29). This way of
staggering the velocity gridpoints is usually called the
Arakawa C-grid, and it is the grid that [ 18] recommends.
An unstaggered grid may also have noise generation in the
pressure field as a velocity change in one gridpoint is related
to the pressure at the adjacent points, but not at the central
point. Thus the proper geostrophic adjustment cannot
occur on the smallest scale with an unstaggered grid. This
problem is handled by a staggered grid; the C-grid con-
figuration deals with this process most efficiently.

There are some drawbacks, however. The calculation of
advection of the variables needs the velocity at the gridpoint
of the respeciive variable, and when calculating the Coriolis
force the two horizontai wind components are needed at the
same place. This has to be solved by averaging over two or
four gridpoints.

Another problem is that the Jower boundaries for the dif-

FIG. 3. The C-grid. The three velocity components are staggered half
a grid step along each respective direction.

ferent velocity components appears at different locations.
We use a no-slip boundary condition for » and v; that is,
they are set to zero at the ground and want to have the
possibility to give the temperature at the ground as input.
This means that the lowest grid level for w will be situated
below the ground. As we want the velocity to be zero at the
ground, we will have to extrapolate a value for w, from w,
and “w, ;.,” which is a nonexisting value at the ground that
we want to be identical to zero,

wy = —Ah, /4h, w,, (34)

where A#, is the height below the ground where the first grid
level is situated and 44, is the height above the ground for
the second grid level.

In the horizontal directions the velocity components are
at the outermost gridpoints in the respective direction; i.e.,
if the thermodynamic variables are located at 7 times j grid-
points, we have to have u in i+1 timesj and v in {
times j+ 1.

4.3. The Upper Boundary Condition

An upper boundary condition that permits internal
gravity wave radiation in pumerical mesoscale models,
proposed by [ 19] has been incorporated in the model. In a
hydrostatic model the gravity waves appear mainly in the
vertical direction. There is a great difference between
horizontal and vertical gravity waves. By using upstream
diflerences at the lateral boundaries, outward propagating
wave energy can be transmitted. This is not the case in the
vertical ditection.

Consider the simplest set of equations that support
gravity wave propagation: the linear, two-dimensional,
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hydrostatic, Boussinesq equations for a uniform mean state
in the absence of Coriolis effects:

%+U%+@g€=o (35)
%?+ g—i—+d%?w=0 (36)
@%—g-g= (37)
%Jrg—t:o (38)

The basic wave propagation characteristics for this system
of equations are best illusirated by considering the disper-
sion equation produced by disturbances, periodic in time
and space,

Ex z, )=k, Loy expliltk x +lz—at}],  (39)
where k. and / are the horizontal and vertical wavenumbers,
w is the frequency. The existence of a nontrivial
homogeneous solution requires that

w=k(U+C) (40}
where C=N/|I| and NZ>=(g/@)dOidz), N is the
Brunt-Viisili frequency, and C is the intrinsic horizontal

phase speed. Horizontal gravity wave propagation is
characterized by the horizontal phase speed

c},x:%:Uic (41)
and the horizontal group velocity
O
= = . 2
Cex k. vxcC (42)

Thus these are the same for each pair of wavenumbers
{k., 1). This means that we can use the upstream scheme at
the lateral boundaries to radiate the horizontal gravity
waves. This is not the case at the top of the model. The verti-
cal phase speed C,. and group velocity C,, are given by

C.=2=wxo) (3)

These expressions are different from one another and,
furthermore, if C> U/ they have the opposite sign. This

means that if wave energy is to be allowed to pass upward
through the upper boundary, disturbances would have to be
advected into the domain from above. Consequently, as
197 notes, the implementation of a vertical wave advection
boundary condition at the upper boundary would require
the use of numerically unstable downstream differences
whenever gravity waves are present with phase speeds
greater than the mean wind.
If we consider linear disturbances of the form

&lx, 7, 1y =&k, 2, w) explith . x —wi)] (45)

and substitute these into (35)-(38), we obtain the wave
equation for an atmosphere with constant wind speed and
stability:

4w N?

E_;+——~—~—(U_Cp'r)2w=0. {46)

The solutions to this wave equation describe the vertically
propagating gravity wave modes and may be written

W= A exp{isign(k,) Nz/(U—C,)}

+ Bexp{ —isign(k,) Nz/(U—C,)}. (47)

As established by [20], the term with coeflicient 4
corresponds to upward energy transport, while the
term with coefficient B produces downward transport,
Depending on the sign of (U/—C,,), the corresponding
vertical momentum flux may be either positive or negative.

Wave reflection at the top will be suppressed if B=0 for
all propagating modes. This is fulfilled if

ow  isign(k N |
=—W,

7z U—C, (48)

Another expression for this vertical gradient can be
obtained by transforming the variables according to (45)
and combining (35) and {38):

ow o ik
== —ik fi= U-c

(49)

If the right-hand side of these expressions are put equal the
destred upper boundary condition for the pressure m, the
perturbation Exner function, depending on the vertical
velocity w will be

N
k@

iz . (50)
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This expression differs from the expression derived by [19]
by the constant factor ¢, as they use

Rifcp
= (i)
Poo

as the definition for the Exner function instead of (32) which
is used in the MIUU model.

In three dimensions with a mean wind component ¥ in
the y direction we will obtain

(51)

N
o Jivin .
* ¥
where &k, is the wave number in the y direction. This expres-
sion requires a two-dimensional Fourier transform along
the upper surface of the model domain.
If we also take nonhydrostatic and Coriolis forces into
consideration, the correct [inear radiation condition
becomes significantly more complicated:

—k, U+k,V—w]N?

ﬁ———A—r—ﬁ\/l
e /k+k:

x /1= (flhk,U+k,V—w]?)w.

(33)
The influences of nonhydrostatic and rotational effects
appear in the first and second square roots, respectively and
permit the vertical radiation of wave energy only for

<k U+k,V—w)y<N2 (54)

For nearly stationary disturbances, such as in a mountain
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wave simulation, w can be neglected. For propagating dis-
turbances, however, this expression becomes ambiguous
since we then need 1o have the frequencies associated with
each pair of wavenumbers. The application would need the
evaluation of Laplace transforms for which the past history
of the flow at the boundary must be stored. Reference [19]
concludes that if a boundary condition which radiates most
of the transient and steady internal gravity wave energy and
which is also easy 1o apply in a numerical model is required,
the square roots in (33) can be ignored, which leads us back
to (52),

4.4, Results with Bell-Shaped Terrain

As described by [ 16] the model was applied to simulate
stably stratified airflow over mesoscale bell-shaped moun-
tain ridges. In this study both the old forward-upstream
scheme and the new version of the MacCormack scheme (9)
were used and the simulations were done in two dimensions;
1.¢., the mountain ridge has an infinite length in the direction
perpendicular to the airflow. The Forester filter described
above for both 2A4x and 44x waves was applied in all
simulations.

A situation with flow disturbances in a fluid with a
uniform velocity /=10 m/s and a buoyancy frequency N
which is given by N? = (g/@)(d@/dz) is studied. With a ver-
tical temperature gradient of 3 K/km, N is thus about 0.01.
The horizontal length scale or the ridge half width L is
10 km. This means that the ratio U/¥ is in the order of } km,
Le., about one-tenth of L. This corresponds to a typical case
in the Aydrostatic nonrotating regime, using the terminology
of [21]. The wind field over the mountain ridge shows a
clear vertical wave propagation with a wave length of about
27 km, which is just what we should expect.

i \@L{/ '''' \

4 Upstream

Vertical
wind

solines
P 1

L-N- RN RS F W Y S

Efvednin

~80 -4 0 40 80

{a) Cross section of the simulated potential temperature @ for flow over a bell-shaped ridge by the upstream model. The shadowed section

refers to surface terrain. The half width of the bell shaped ridge L is 10 km, the ridge crest height H is 1000 m, the geostrophic wind U, is 10 m/s, and
the lapse rate d8/dz is 1 K/km. (b) Same as in Fig. 4a but for the vertical wind speed w.
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The potential temperature and vertical wind fields for the
upstream model are shown in Figs. 4a and b. If the new
scheme is used instead problems appear. Figure 5a shows a
wave in the temperature field upstream of the mountain
ridge and the vertical wind field in Fig. 5b looks very
sprawling. Furthermore the values range from about
—0.7-0.6 m/s when the new scheme is used, whereas they
are between —0.45 to 0.45 m/s with the upstream model.
The new scheme is less damping than the upstream scheme
and this means that the reflection at the boundaries is much
more pronounced. Prior to including the upper boundary
condition presented earlier, the grid was staggered with the
Arakawa C-grid. The staggered model gives a much
smoother vertical wind field, Fig. 6b, and the maximum
values become about the same as with the old upstream
model. The upstream wave in the temperature field is about

a
il L_e____,_,_,/\'a Potential
6 1 1 Temperature
7 ! MC2a
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b
[km] .
Vertical
4 .
wind
6 1
MC2a
5_
4 4
N _Fsolines {cm/s)
I — -40
2 — -30
) 3 — -20
2 3 — .10
5 — )
6 — 10
1 7 — 20
8 — 30
9 — 40
.80 80 (km|

(a) Same as Fig. 4a but with the new advection scheme MC2a. (b) Same as Fig. 4b but with the new advection scheme MC2a.

as ¢vident as before, perhaps most distinct in isolines num-
ber five and eight, Fig. 6a. If the upper boundary condition
is applied, the upstream disturbance is gone, Fig. 7a. The
vertical wind velocity is somewhat smaller but the general
features are the same, Fig 7b. The extreme values in the
temperature fields were about the same for all the simula-
tions. In other words, similar results are obtained with the
staggered model using the new advection scheme and the
new upper boundary condition as with the old model. The

advection process itself is, however, more accurately
described.

4.5. Results with Sea Breeze Simulations

When the flow over bell-shaped terrain was studied the
result with the new advection scheme was very similar to the

:3/
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{a) Same as Fig. 5a but with the C-grid. {b) Same as Fig. 5b but with the C-grid.
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result with the old upstream scheme. That is also what can
be expected, as advection is not the primary physical
process in creating a vertical gravitational wave above the
terrain. In this subsection a major difference between
the schemes will be demonstrated. Just as in the flow over
the bell-shaped terrain case the total model domain height
was 7 ki, but the simulated sea breeze circulation occurred
below about 2.5 km which is why the figures only show that
part of the fields. Both the 24x and 44x waves were filtered.

Reference [15] simulated idealized sea breeze systems
with the MIUU model over islands of different sizes. When
the scale of the land surface was relatively small, the two
initial sea breeze systems, originating near the shores,
merged into a quite a strong convergence zone over the
island’s center. When the scale was extended to about
100 km or ritore, that did not occur. Here we study the
development of sea breeze over an island which has a width
of 170 km. The grid distance is 10 km and the simulation is
performed in two dimensions, corresponding to an infinitely
long island in the north-south direction.

The 20 vertical levels are situated according to Eq. (27),
with the lowest gridpeint above ground at 2 m. The initial
lapse rate of potential temperature is 4 K/km. The
geostrophic wind is set to zero, numerically I cm/s, corre-
sponding to a calm free atmosphere. The surface roughness
length z; is 3 ¢cm over land and 0.2 mm over sea. The surface
temperature is initially 288 K at all gridpoints, but after
sunrise the temperature over the island is increased by H,
which is defined as

H =8 sin(n/2 1/6), (55)
where 7 is the time in hours after sunrise. The heating has
thus its maximum 6 h after sunrise. In the simulations
sunrise is at 6 am and the maximum heating is at noon. The
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{a) Same as Fig. 6a but with the upper boundary condition applied. (b) Same as Fig. 6b but with the upper boundary condition applied.

heating over land is then kept constant throughout the rest
of the simulation until 4 pm.

In a sea breeze circulation system horizontal cross sec-
tions of one of the parameters, e.g., the vertical wind field or
potential temperature field, are normally studied. Here we
are more interested in the sea breeze front, and a good way
io study that is to look at how the horizontal velocity at a
fixed point changes with time. In Figs. 8 and 9 the horizon-
tal wind speed at a point 30 km from the shore line is shown
for simulation with the two advecion schemes. The new
advection scheme, Fig. 8, gives a sharp maximum at about
| pm of somewhat more than 5.5 m/s. The upstream scheme
on the other hand, Fig. 9, gives a wind speed that is less than
5 m/s and, furthermore, the maximum is delayed about 1 h,

tm] 27 .
] Horizontal
4 wind
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7 C-grid
1500
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Fo i
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7 8 9 10 11 12 13 14 15 16 {h]

FIG. 8 The development of the horizontal wind component per-
pendicular to the shore line at a point 30 km inland from the shore line as
simulated with the new advection scheme MC2a. The width of the island
is 170 km. The initial lapse rate 48/d= is 4 K/km and the geostrophic wind
speed is set to zero.
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FIG. 9. Same as Fig. 8 but with the forward-upstream scheme.

compared to the new advection scheme. The maximum
values of the wind component going in the other direction,
from land towards the sea are about the same in both
simulations, somewhat less than 2.5 m/s.

5. CONCLUSIONS

The advection scheme presented in this paper is shown to
be superior to the upwind scheme when it comes to simple
linear advection. It also gives a better solution in a non-
linear case, the physically relatively simple model of the
shock wave. When we look at the more complex case of a
two-dimensional atmospheric model it is much harder to
explicitly point out the improvements due to the higher
order advection scheme, as there are so many other physical
processes going on at the same time, The simulation of the
sea breeze front has a lot in common with the shock wave.
The front is much sharper and has a higher maximum value
with the new scheme. The maximum is reached earlier in the
simulation. In the flow over the bell-shaped terrain case the
new advection scheme gives about the same solution as the
upwind model does. Hopefully this new scheme represents
the advection process better also in this more complex case.
The advection process itself is physically less important here
than in the sea breeze simulation. The major drawback of
the new scheme is, of course, that it demands quite a bit
more computer time, not due to the advection scheme itself,
but because we have to incorporate more numerical filtering
and a new upper boundary condition that allows vertically
propagating gravity waves to pass through the upper
boundary and not to reflect down into the model again. As
this upper boundary condition uses fourier transforms it is
even heavier in a fully three-dimensional atmospheric
model. In three dimensions the model without a filter takes

about the same time with the two different schemes, in fact
a little less with the new scheme, as the new scheme is inde-
pendent of the wind direction. If we are using the 24x filter
it almost takes twice as much time with the new scheme and,
if we are also using the 44x filter, the time spent in the
program is about three times as much as with the original
forward-upstream scheme. Still, if we want to have a
numerical model for the atmosphere it is very important to
have an advection scheme as accurate as possible, especially
if we want to be able to model dispersion processes along
with the ordinary physics of the atmosphere.

One reason for the combination of a telescopic grid trans-
formation and the damping forward-upstream scheme in
the old model was to keep the influence from disturbances
at the boundaries as small as possible while maintaining
reasonable accuracy in the central domain of the model
located over the area of main interest. The flow over the
bell-shaped terrain case shows that in a theoretical study
with relatively smooth terrain the result from the old model
is as accurate as the new model when it comes to the
dynamics. In some applications a combination of the two
different advection schemes may be advantageous, with the
old scheme for the dynamics and the new scheme for
parameters where advection is one of the most important
physical mechanisms. A combination with different advec-
tion schemes in the different directions is also a possible
course of action. If the meso-y-scale model is nested within
a larger scale model it is important to ensure that all
relevant information from the larger model, which is
implemented at the boundaries of the meso-y-scale model,
will affect the whole domain of the inner model.
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